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Abstract. An on-demand service platform connects waiting-time-sensitive customers

with independent service providers (agents). This paper examines how two defining

features of an on-demand service platform—delay sensitivity and agent independence—

impact the platform’s optimal per-service price and wage. Delay sensitivity reduces

expected utility for customers and agents, which suggests that the platform should

respond by decreasing the price (to encourage participation of customers) and increasing

the wage (to encourage participation of agents). These intuitive price and wage prescrip-

tions are valid in a benchmark setting without uncertainty in the customers’ valuation

or the agents’ opportunity costs. However, uncertainty in either dimension can reverse

the prescriptions: Delay sensitivity increases the optimal price when customer valua-

tion uncertainty is moderate. Delay sensitivity decreases the optimal wage when agent

opportunity cost uncertainty is high and expected opportunity cost is moderate. Under

agent opportunity cost uncertainty, agent independence decreases the price. Under cus-

tomer valuation uncertainty, agent independence increases the price if and only if valuation

uncertainty is sufficiently high.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2017.0678.
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1. Introduction
Recent years have witnessed the emergence and rapid

growth of platforms for on-demand services. Exam-

ples include restaurant food delivery (e.g., Caviar,

DoorDash), consumer goods delivery (e.g., UberRush,

Go-Mart), and taxi-style transportation (e.g., Fasten,

Go-Jek, Lyft, Uber; Roose 2014, Kokalitcheva 2015,

MacMillan 2015, Shoot 2015, Watanabe 2016). These

services are on-demand in the sense that upon experi-

encing a need for service, a customer desires service

immediately and is sensitive to delay. In this way, on-

demand service platforms are distinct from scheduled

service platformswhich book appointments in advance

(e.g., AmazonHome Services) (Dowdle 2015).

A platform connects customers seeking service with

independent agents that provide the service. In each of

the preceding examples, an agent is an independent

contractor who receives a payment from the platform

for each service completion. The agent is independent

in the sense that she decides whether and when to

work. The platform business model is distinct from the

traditional firm–employee business model, wherein

the firm determines when its employees work and

pays them a salary or hourly rate rather than a piece

rate. Examples of on-demand services provided via the

firm–employee model are food delivery (e.g., Munch-

ery); pickup, packaging, and shipping (e.g., Shyp); and

town-car transportation (Bensinger 2015).

This paper explores two key features of on-demand

service platforms: First, upon experiencing a need

for service, waiting-time-sensitive customers choose

whether to seek service. Second, independent agents

choose whether to work. Two elements that connect

these customer and agent decisions are agent idleness

andscale economies.The fractionof timeanagentwork-

ing for an on-demand service platform is idle can be

significant; because an independent agent is not com-

pensated for idle time, the fractionof idle time she antic-

ipates significantly impacts her decision of whether to

work (Singer and Isaac 2015, Steinmetz 2015). Although

agents prefer this fraction be small, customers pre-

fer that it be large because greater agent availability

reduces customers’ congestion-driven delay. Whereas

idleness hurts agents but benefits customers, both

groups benefit fromscale economies. Indeed, platforms

point to scale economies from pooling efficiencies as

one of their primary advantages over small-scale firms

(e.g., an individual restaurant or retailer providing its

own delivery service) in the provision of on-demand

services (Huet 2015, Shoot 2015).

The purpose of this paper is to provide insight

into how on-demand service platforms should set per-

service prices and wages (see Figure 1). By comparing

the setting with (self-scheduled) independent agents

to one with (firm-scheduled) employee agents, we

address the following question: What is the impact of

agent independence on the optimal price? Because of
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Figure 1. Impact of Agent Independence and Customer Sensitivity to Delay
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Insensitive

the on-demand nature of the service, customers are

sensitive to delay. By comparing this base case to a

benchmark case where customers are insensitive to

delay, we address the following question: What is the

impact of delay sensitivity on the platform’s optimal

price and wage? Customer insensitivity to delay cap-

tures the extreme case of customer patience.

To address these two questions, we employ a queue-

ing model in which the customer arrival rate and

number of servers (agents) are endogenous. The plat-

form commits to a per-service price and wage prior

to the resolution of uncertainty in the customers’ val-

uation for receiving service and in the agents’ oppor-

tunity costs. Customers have a common valuation

for receiving service, and an agent participates if the

expected revenue generated fromparticipation exceeds

her opportunity cost.

Delay sensitivity reduces expected utility for cus-

tomers (directly, through waiting) and agents (indi-

rectly, through idleness), which suggests that the

platform should respond to delay sensitivity by de-

creasing the per-service price (to encourage participa-

tion of customers) and increasing the per-service wage

(to encourage participation of agents). These intuitive

price and wage prescriptions are valid in a benchmark

settingwithout uncertainty in the customers’ valuation

or the agents’ opportunity costs. This paper’s first con-

tribution is to identify and explain driving forces that

cause these prescriptions to break. Moderate customer

valuation uncertainty causes the price prescription to

break. High opportunity cost uncertainty coupledwith

a moderate expected opportunity cost causes the wage

prescription to break.

The second contribution is to identify and explain

driving forces that lead agent independence to either

increase or decrease the optimal price. Agent oppor-

tunity cost uncertainty causes agent independence to

decrease the price. High (low) customer valuation

uncertainty causes agent independence to increase

(decrease) the price.

A practice of prominent on-demand service plat-

forms that has attracted research (Cachon et al. 2017,

Banerjee et al. 2015) is the adjusting of prices (and

wages) in real time based on the system state. How-

ever, of the previously identified on-demand service

platforms, only two, Lyft and Uber, do so. Platforms

avoid real-time pricing, in part, because of customer

resistance to the practice (MacMillan 2015). To com-

plement the real-time pricing research and to provide

insight for platforms that commit to prices and wages

in advance, we focus on that setting. More broadly, our

work is related to four areas of literature: research on

platforms not providing on-demand service, pricing

in queueing systems, incentives for agents’ capacity-

related decisions, and on-demand service platforms.

On-demand service platforms are but one of several

platform types in the sharing economy (see Table 1).

Product-sharing platforms (e.g., Airbnb, Turo) connect

customers seeking to rent assets (e.g., apartments, cars)

with owners. Benjaafar et al. (2018), Fraiberger and

Sundararajan (2015), and Jiang and Tian (2018) exam-

ine individuals’ decisions to purchase or rent assets in

the presence of a product-sharing platform. Li et al.

(2016) studies owners’ pricing behavior empirically.

Product-sharing platforms differ from on-demand ser-

vice platforms in several respects: customers book in

Table 1. Sharing Economy Platforms

Nature of offering

Price-setting

Platform type party Differentiation Timing

On-demand Platform Undifferentiated On-demand

service

Freelancing Skilled agent Agent specific On-demand

Product sharing Asset-owning Agent specific Scheduled

agent
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advance, the platform does not determine prices, and

the offering to customers exhibits heterogeneity. The

latter two differentiating characteristics are shared by

freelancing platforms (e.g., Upwork), which connect

customers seeking professional services, such as soft-

ware development, with skilled agents. When hetero-

geneity is pronounced, a key role of the platform is

matching customers to agents in way that ensures fit

between the customer’s needs and the agent’s capa-

bilities. Allon et al. (2012), Arnosti et al. (2014), and

Hu and Zhou (2015) provide insight into the design of

matching mechanisms. Several papers (e.g., Snir and

Hitt 2003, Moreno and Terwiesch 2014) study freelanc-

ing platforms empirically, examining agents’ bidding

behavior and reputation mechanisms. Heterogeneity,

matching, and agent reputation are not of central

importance for the on-demand service platforms that

motivate our work. Whereas each software develop-

ment project has distinct characteristics and requires

specific skills, an on-demand service (e.g., transporta-

tion of a person or product) is generic and does not.

Finally, modeling and empirical work (e.g., Einav et al.

2016, Zervas et al. 2017) examines the impact of plat-

form entry on incumbents.

The literature on pricing in queueing systems is

extensive, dating back to Naor (1969); see Hassin and

Haviv (2003) and Hassin (2016) for reviews. A key

feature this literature and our work have in com-

mon is that customer demand is sensitive not only to

price, but also to the service level (i.e., delay) expe-

rienced by customers. Our work employs the cus-

tomer behaviormodel of Chen and Frank (2004), which

examines pricing and capacity (service rate) decisions

in an M/M/1 system (i.e., Poisson arrival process;

exponential service distribution; one server; first-come,

first-served scheduling policy) in a setting where cus-

tomers are homogenous and the queue is unobserv-

able. Many papers consider less restrictive settings,

examining pricing and capacity decisions with a sin-

gle class of heterogeneous customers (e.g., Mendelson

1985, Maglaras and Zeevi 2003, Kumar and Randhawa

2010) or pricing and scheduling decisions with mul-

tiple customer classes (e.g., Mendelson and Whang

1990, Afèche 2013, Afèche and Pavlin 2016, Nazerzadeh

and Randhawa 2017, Maglaras et al. 2018). Several

papers examine dynamic price and/or lead-time quo-

tation (e.g., Plambeck 2004, Çelik and Maglaras 2008,

Ata and Olsen 2013). Some research examines pric-

ing decisions when service quality increases in ser-

vice time (e.g., Anand et al. 2011), customers are unin-

formed about service quality (e.g., Debo et al. 2013),

or customers purchase subscriptions (e.g., Cachon and

Feldman 2011). The aforementioned pricing-in-queues

papers assume capacity is exogenous or under the con-

trol of the system manager, whereas we focus on the

setting where capacity is determined by the strategic

behavior of agents.

The literature on incentives for agents’ capacity-

related decisions is extensive. For a review of the

supply chain contracting literature, where a buyer’s

incentives influence quantity decisions of supplier

agents, see Cachon (2003). More relevant to our

work, Gilbert and Weng (1998), Cachon and Zhang

(2007), Gopalakrishnan et al. (2016), and Zhan and

Ward (2015) examine how a system manager’s rule

for allocating customers to agents and/or the per-

service wage influences agents’ service-rate decisions

in queueing systems. Closer to our work, which exam-

ines agents’ decisions of whether to work, Ibrahim

(2018) examines a setting in which the system man-

ager determines the number of employee agents and

wages. Providing agents discretion over when to work

can increase or decrease the optimal number of agents.

The aforementioned capacity incentives in queueing

system papers assume prices and customer arrivals

are exogenous, although Ibrahim (2018) and Zhan and

Ward (2015) allow for customer abandonment. In con-

trast, we focus on the setting where price and customer

arrivals are endogenous.

Closest to our work are papers examining on-de-

mand service platforms. Banerjee et al. (2015), Cachon

et al. (2017), and Gurvich et al. (2018) focus on agents’

decisions of whether to work in settings with uncertain

demand and heterogeneous agent opportunity costs.

Banerjee et al. (2015) and Cachon et al. (2017) focus

on comparing static versus dynamic (i.e., demand- or

system-state-contingent) prices and wages. In Banerjee

et al. (2015), the wage is an exogenous fraction of the

price, whereas in Cachon et al. (2017) and our work,

both the price and wage are endogenous. Cachon et al.

(2017) finds that “surge pricing,” wherein the wage is

a fixed percentage of a demand-contingent price, per-

forms well. In contrast, Banerjee et al. (2015) finds that

static pricing performs well. Cachon et al. (2017) exam-

ines an agent’s long-run decision of whether to join the

platform, as well as the short-run decision of whether

to work, whereas Banerjee et al. (2015) and our work

only focus on the latter. To obtain insights in a rich

queueingmodel, Banerjee et al. (2015) employs approx-

imations and large system asymptotics; in contrast, our

work employs a stylized model that allows for exact

analysis. In Banerjee et al. (2015), customers are het-

erogeneous, seek service if and only if their valuation

exceeds the price, and are infinitely impatient (they

abandon if not served immediately); in contrast, in

our work, customers are homogeneous, finitely patient,

and seek service if and only if their expected utility

from doing so is nonnegative.

In Gurvich et al. (2018), the platform determines the

number of agents, market-condition-contingent price

and wage, and a cap on the number of agents allowed
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to work; agents decide whether to work after observ-

ing the market condition. Gurvich et al. (2018) finds

that for a fixed agent pool, agent independence reduces

the number of working agents and increases the opti-

mal price. Our findings are consistent with the former,

but not the latter. The reason for the difference in price

findings is, in part, that in the newsvendor-style model

of Gurvich et al. (2018) (and that of Cachon et al. 2017),

demand does not depend on the service level, whereas

in our queueing model it does; see Section 3.1. Finally,

Kabra et al. (2016) empirically studies the extent to

which a temporary price reduction or wage increase is

useful in stimulating growth of an on-demand service

platform.

2. Model
A platform connects customers seeking service with

independent agents. First, the platform (it) commits to

the per-service price p that each customer (he) pays

the platform and the per-service wage ω the platform

pays each agent (she). Second, uncertainty regarding

customers’ valuation of the service and agents’ oppor-

tunity costs is resolved. Each agent observes the cus-

tomers’ valuation and agents’ opportunity costs and

decides whether to work (participate). Third, each

customer observes the customers’ valuation and the

expected waiting time and decides the probability of

seeking service upon experiencing a need for service.

All parties are risk neutral. A natural timescale is

a period of a few hours, during which the parame-

ters are reasonably stationary (e.g., Tuesday 6:00 p.m.

to 9:00 p.m.). To employ a consistent interpretation

of uncertainty through this paper, we use weather:

Adverse weather conditions tend to increase both cus-

tomers’ valuation of service (e.g., food delivery, trans-

portation) and agents’ (e.g., drivers’) opportunity costs

(Scheiber 2015). Theassumption that customersobserve

the expected waiting time may be reasonable to the

extent that platforms provide this information, as is the

case for the on-demand service platforms in Section 1.

The assumption that agents have common information

regardingvaluations and costsmaybe reasonable to the

extent that these aredeterminedby factors that are com-

monly observed (e.g., weather conditions).

We begin with the customer side. Customers are

homogenous ex ante and ex post: All customers expe-

riencing a need for service share a common valuation

for receiving service V̂ , a random variable with real-

ization V ∈ {V h ,V l}, and incur delay disutility c > 0

per unit time while waiting for service. The customers’

valuation per service is high V h � v+δ or low V l � v−δ
with equal probability, where δ ∈ [0, v). We refer to δ as
customer valuation uncertainty. One can interpret δ as
reflecting the degree to which customers’ valuations

are sensitive to the weather being “good” or “bad.”

A customer has the opportunity to seek service from

a platform, which has access to n ∈ {0, 1, . . . , ¯N} par-
ticipating agents, each of which has average service

rate µ. For simplicity in exposition, initially suppose n
is nonzero. Customers are processed in a first-come,

first-served fashion, and the platform over the long

term equally allocates requests for service over the n
agents. Events triggering a customer’s need for ser-

vice occur at rate Λ. In the spirit of the contention

of Banerjee et al. (2015) that ride-sharing platforms

are typically supply constrained, we focus on the case

where the need for service is abundant,

Λ > ¯Nµ. (1)

This focus is consistent with the observation that the

growth of on-demand service platforms in many cities

is limited by the availability of workers rather than cus-

tomers (Farrell and Greig 2016, Phillips 2016). If cus-

tomers, upon experiencing a need for service, seek ser-

vice with probability q, then the arrival (demand) rate

is λ � qΛ. Needs for service occur according to a Pois-

son process, and service times are exponentially dis-

tributed. A customer’s expected waiting time in this

M/M/n queueing system is

W(λ, n)�
(λ/µ)n

n!(nµ)(1− λ/nµ)2

·
( n−1∑

i�0

(λ/µ)i
i!

+
(λ/µ)n

n!(1− λ/nµ)

)−1

, (2)

provided that the system is stable, λ/nµ < 1.

Each customer decides whether to seek service in

step 3, after observing his valuation V , the price p, and
the steady-state expected waiting time (2); that is, cus-

tomers make decisions based on the long-run expected

waiting time, rather than on the current state of the

queue. A customer seeks service if and only if the

expected utility from doing so,

V − p − cW(λ, n), (3)

is nonnegative. After deciding to seek service, the cus-

tomer does not renege prior to receiving service (i.e.,

does not abandon the queue). Let q(V, p , n) denote
the equilibrium probability of seeking service, and let

λ(V, p , n) � q(V, p , n)Λ denote the equilibrium arrival

(demand) rate under valuation V , price p, and n par-

ticipating agents. It is well known (see, e.g., Hassin and

Haviv 2003) that the unique equilibrium q(V, p , n) �
λ(V, p , n)/Λ, where λ(V, p , n) is the unique value of λ
that satisfies

V − p − cW(λ, n)� 0, (4)

provided that p < V and n ≥ 1. If, instead, either the

price exceeds the realized valuation p ≥ V or the num-

ber of participating agents n � 0, so that the platform
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is not offering service, then the unique equilibrium

q(V, p , 0)� λ(V, p , 0)� 0.

We now turn to the agent side. Agents are homo-

geneous ex ante and heterogeneous ex post. Agent i ∈
{1, . . . , ¯N} has opportunity cost per unit time K̂i , a

random variable with realization Ki ∈ {KH ,KL}. Each
agent’s opportunity cost per unit time is high, KH �

k + ∆, or low, KL � k − ∆, with equal probability,

where ∆ ∈ [0, k). The correlation of any pair {i , j} ∈
{1, . . . , ¯N}2, where i , j, of agents’ opportunity costs

is Corr(K̂i , K̂ j) � ρ ∈ [0, 1]. We refer to ∆ as the agent

opportunity cost uncertainty. One can interpret ∆ as

reflecting the degree to which agents are sensitive to

the weather being “good” or “bad.”

Each agent decides whether to participate in

step 2, after observing the agents’ opportunity costs

{Ki}i�1,..., ¯N , the customers’ valuation V , and the plat-

form’s per-service wage ω and price p. When n ∈
{1, . . . , ¯N} agents participate, each agent’s demand rate

is λ(V, p , n)/n. If agent i anticipates that n − 1 other

agents participate, then agent i anticipates receiving

expected utility at rate

ωλ(V, p , n)/n −Ki (5)

if she participates. An agent participates if and only if

she anticipates receiving nonnegative expected utility

from doing so. Let N̂L
denote the number of agents

with the low opportunity cost KL
, a random variable

with realization NL ∈ {0, 1, . . . , ¯N}. LetN (V,NL) denote
the equilibrium number of participating agents n
under valuation V and NL

low-cost agents. We restrict

attention to equilibria in which high-cost agents (those

with opportunity cost KH
) participate only if all low-

cost agents participate. The equilibrium number of

participating agents, N (V,NL), under NL ∈ {1, . . . ,
¯N − 1} low-cost agents satisfies

ωλ(V, p ,N (V,NL))/N (V,NL) −K j ≥ 0, (6)

where j � H if N (V,NL) ∈ {NL + 1, . . . , ¯N}, and j � L if

N (V,NL) ∈ {1, . . . ,NL}, and

ωλ(V, p ,N (V,NL)+ 1)/[N (V,NL)+ 1] −K j < 0, (7)

where j � H if N (V,NL) ∈ {NL , . . . , ¯N − 1}, and j � L
if N (V,NL) ∈ {0, . . . ,NL −1}. The equilibrium N (V,NL)
under NL � ¯N (NL � 0, respectively) satisfies (6), where

j � L ( j � H, respectively) if N (V,NL) ∈ {1, . . . , ¯N},
and (7), where j � L ( j � H, respectively) if N (V,NL) ∈
{0, . . . , ¯N − 1}.
Finally, we turn to the platform side. The plat-

form makes decisions in step 1, in the face of uncer-

tainty regarding customers’ valuation of the service

and agents’ opportunity costs. The platform sets its

price and wage to maximize its expected profit rate

max

(p , ω)
(p −ω)E[λ(V̂, p ,N (V̂, N̂L))],

where λ(·, ·, ·) satisfies (4), and N (·, ·) satisfies (6)

and (7).

To understand the impact of agent independence,

we contrast the platform business model with (self-

scheduled) independent agents to the firm–employee

business model with (firm-scheduled) employee

agents. The firm sets the price in step 1. In step 2,

reflecting the notion that a firm has more information

regarding employees than a platform has regarding

independent contractors, the firm observes employee

agents’ opportunity costs as well as the customers’ val-

uation. The firm decides which employee agents will

work, with the firm incurring these agents’ costs. This

can be implemented by the firm, in step 2, offering to

each agent an hourly rate in exchange for commitment

by the agent to work. An agent works if and only if she

accepts the offer. In the firm–employee business model,

the firm sets the price and activates agents to work to

maximize its expected profit rate

max

p

{
pE

[
max

{Ii }i�1,..., ¯N

{
λ

(
V̂, p ,

¯N∑
i�1

Ii

)
−

¯N∑
i�1

Ii K̂i

}]}
, (8)

where Ii � 1 if agent i works and Ii � 0 otherwise,

and λ(·, ·, ·) satisfies (4). We restrict attention to the

parameter range in which the firm activates at least

one agent, for any realized customer valuation V and

agent opportunity costs {Ki}i�1,..., ¯N . Throughout, we

restrict attention to the parameter range in which the

firm’s (platform’s) expected profit rate under the opti-

mal price (and wage) is strictly positive.

Our formal results hold when the employment

model is instead conceived as capturing a longer-term

employment relationship. Reflecting ex ante two-sided

commitment, in step 1, the platform offers to each

employee agent a salary rate in exchange for a com-

mitment by the agent to work subsequently. An agent

works subsequently if and only if she accepted the offer

in step 1.

We have assumed that customers observe the long-

run (steady-state) expected waiting time, which is

roughly consistent with the practice of on-demand

service platforms that periodically update the ex-

pected waiting time range they provide to customers

(e.g., Caviar). To more accurately reflect the practice

of platforms that provide real-time expected waiting

time information (e.g., Lyft,Uber)would require amore

complex model in which, essentially, the queue length

was observable to prospective customers.

For expositional simplicity, we have assumed that

each agent observes all agents’ opportunity costs and

the customers’ valuation prior to making an (irre-

versible) participation decision. In reality, an agentmay

not have perfect information regarding other agents’

opportunity costs. Furthermore, an agent’s participa-

tion decision is fairly easy to reverse: an agent can par-

ticipate for some initial period to learn her demand
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rate, to inform her longer-run participation decision.

To the extent that the initial period is brief, it is almost

costless for the agent to learn her demand rate, which is

all that is required for the agent to make her longer-run

participation decision.

3. Results
Under price p, wage ω, realized valuation V , and real-

ized number of low-cost agents NL
, the equilibrium

in the number of participating agents N (V,NL) and
demand rate λ(V, p ,N (V,NL)), the solution to (4), (6),

and (7), is given in the following lemma.

Lemma 1. An equilibrium in participating agents
N (V,NL) and demand rate λ(V, p ,N (V,NL)) has

N (V,NL)�


0 if and only if ω < KL/λ(V, p , 1),
NL if and only if ω ∈ [NLKL/λ(V, p ,NL),

(NL + 1)KH/λ(V, p ,NL + 1)),
¯N if and only if ω ≥ ¯NKH/λ(V, p , ¯N)

if NL ∈ {1, . . . , ¯N −1}. If NL � ¯N , then N (V,NL)� 0 if and
only if ω < KL/λ(V, p , 1), and N (V,NL) � ¯N if and only if
ω ≥ ¯NKL/λ(V, p , ¯N). If NL � 0, then N (V,NL) � 0 if and
only if ω < KH/λ(V, p , 1), and N (V,NL)� ¯N if and only if
ω ≥ ¯NKH/λ(V, p , ¯N).
Lemma 1 is straightforward to verify. Proofs of all

other formally stated results are in the appendix.

It is natural that, ceteris paribus, participation of an

additional agent benefits customers (through reduced

waiting times) and/or the platform (through greater

customer demand). What is more interesting is that

participation of an additional agent benefits currently

participating agents: the equilibriumdemand allocated

to an agent λ(V, p , n)/n strictly increaseswith the num-

ber of participating agents n; see Lemma A1(a) in

the appendix. We refer to this as the agent participa-
tion externality. Participation of an additional agent has

two effects: First, the improved service level (reduced

waiting times) translates into greater total customer

demand λ(V, p , n). Second, the “competition” among

agents over the total demand “pie” λ(V, p , n) intensi-
fies in that the pie is being divided into more “slices.”

If, in violation of inequality (1), the need for service

were scarce such that λ(V, p , n) � Λ, then the compe-

tition effect would dominate: participation of an addi-

tional agent would reduce each agent’s slice Λ/n of

the fixed-size demand pie. When the need for service

is abundant (i.e., inequality (1) holds), the improved

service level effect dominates the competition effect

because of the scale economies present in queueing

systems.

The structure of the equilibrium in participating

agents N (V,NL)—that either 0, NL
or

¯N agents partic-

ipate—is driven by the agent participation externality

and the assumption that the ex post heterogeneity in

agents’ costs is binary. The former implies that either

all or no agents of a given cost participate. (The for-

mer also implies that the wage ranges in Lemma 1 fre-

quently overlap; indeed there is always overlap when

¯N ≥ 2 and NL , ¯N − 1. Hence, when
¯N ≥ 2, for any

realized valuation V and number of low-cost agents

NL , ¯N−1 there exist a price and wage (p , ω) such that

multiple equilibria exist.)

Lemma 1 points to a risk that platforms face in offer-

ing high wages: doing so can sustain undesirable equi-

libria with few participating agents. This is most eas-

ily seen by example. Suppose µ � c � KL � 1, KH � 10,

V � 20, p �19.9, ¯N �15, and NL �5. Underwage ω � 16,

the equilibria in participating agents are N (V,NL) ∈
{5, 15}. Under lower wage ω � 13, N (V,NL) � 15 is the

unique equilibrium. To the extent that N (V,NL) � 5

participating agents emerges as the equilibrium under

wage ω � 16, by reducing the wage to ω � 13, the

platform increases the number of participating agents.

The agent participation externality implies that sus-

taining an equilibrium with few agents—with its con-

sequent limited demand per agent—requires a high

wage, whereas, under a (moderately) low wage, only

equilibria with many agents can be sustained.

In the face of this risk, it is attractive to both the plat-

form and agents to coordinate on the equilibrium with

the most agents (formally, each party’s expected utility

increases with the number of participating agents). In

the sequel, we assume that the parties do so, if multiple

equilibria exist.

Throughout, to sharpen results, we focus on the spe-

cial cases wherein uncertainty is present on only the

customer or agent side. Lemma 2 characterizes the

platform’s optimal decisions under customer valuation
uncertainty (i.e., δ > 0 and ∆ � 0), and Lemma 3 under

agent opportunity cost uncertainty (i.e., δ � 0 and ∆ > 0).

Let ph ∈ arg maxp≥0
{pλ(V h , p , ¯N)}, p l ∈ arg maxp≥0

{[p−
¯Nk/λ(V l , p , ¯N)]∑ j∈{h , l} λ(V j , p , ¯N)/2}, and ω j � ¯Nk/
λ(V j , p j , ¯N) for j ∈ {h , l}.
Lemma 2. Under customer valuation uncertainty, the plat-
form’s optimal price and wage are

(p∗ , ω∗)�
{
(p l , ωl) if δ ≤ ¯δ,

(ph , ωh) if δ > ¯δ,
(9)

where ¯δ ∈ (0, v).
The agent participation externality implies it is opti-

mal for the platform to induce either all agents to par-

ticipate or none. Agents are less inclined to participate

when the realized customer valuation is low, because

this translates to a lower demand rate for each agent,

λ(V l , p , n)/n < λ(V h , p , n)/n for n ∈ {1, . . . , ¯N}. Con-
sequently, the platform has a choice either to offer a

“high wage” ω � ¯Nk/λ(V l , p , ¯N), which induces the
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agents’ participation even when the realized valuation

is low, or to offer a “low wage” ω � ¯Nk/λ(V h , p , ¯N),
which induces the agents’ participation only when the

realized valuation is high. When valuation uncertainty

is high, low-valuation customers have very low valua-

tions and hence are unattractive to serve; consequently,

it is optimal to offer a low wage and serve only high-

valuation customers. Conversely, when uncertainty is

low, it is optimal to offer a high wage and serve all cus-

tomers. The platform’s optimal price and wage reflect

this structure, with the addition that the platform

chooses a price that maximizes revenue from high-

valuation customers when uncertainty is high and a

price that maximizes expected profit from all cus-

tomers when uncertainty is low.

For use in Lemma 3, let

pA ∈ argmax

p≥0

{pλ(v , p , ¯N)}, RA
� pAλ(v , pA , ¯N),

RM(p ,n)� p
¯N∑

j�n
Pr(NL

� j)λ(v , p , j),

RM(n)�max

p≥0

RM(p ,n), ˜k �
RA −RM(1)

2
¯N

,

ΠM(p ,n)�
[
p− nKL

λ(v , p ,n)

]
¯N∑

j�n
Pr(NL

� j)λ(v , p , j),

pM(n) ∈ argmax

p≥0

ΠM(p ,n),

(pM ,nM) ∈ argmax

p≥0, n∈{1,..., ¯N−1}
ΠM(p ,n),

ωM
�

nMKL

λ(v , pM ,nM) , and ω j
�

¯NK j

λ(v , pA , ¯N)
,

for j ∈ {H,L}.

Lemma 3. Under agent opportunity cost uncertainty, the
platform’s optimal price and wage are

(p∗ , ω∗)�


(pA , ωH) if ∆ ≤

¯

∆,

(pA , ωL) if ∆ ∈ (
¯

∆, ¯∆],
(pM , ωM) if ∆ > ¯∆,

where 0 <
¯

∆ ≤ ¯∆. Furthermore,
¯

∆ < k if and only if k > ˜k;
¯∆ < k if and only if k > ˜k and ρ < 1.

An agent is more inclined to participate when

many other agents are participating (because of the

agent participation externality) and when the agent’s

cost is low. Consequently, the platform has a choice

to offer a high wage, ω � ¯NKH/λ(v , p , ¯N), which

induces all agents to participate, or a low wage, ω �

nKL/λ(v , p , n) < ¯NKH/λ(v , p , ¯N), which induces all

low-cost agents to participate, provided that there are

at least n ∈ {1, . . . , ¯N} of them. If either the expected

opportunity cost is small k ≤ ˜k or cost uncertainty

is small ∆ <
¯

∆, then even “high-cost” agents have

relatively low cost. Consequently, the platform can

induce even high-cost agents to participate at relatively

low cost to the platform. (Formally, the “high wage”

required to induce such participation is small.) Fur-

thermore, scale economies make it attractive for the

platform to induce the participation of all agents.

In contrast, if k > ˜k and ∆ >
¯

∆, then high-cost agents

have very high cost, and it becomes too costly for the

platform to induce their participation. Instead, the plat-

form induces the participation of low-cost agents, pro-

vided that there are enough to establish sufficient scale

economies. The scale economies are sufficient when

only a strict subset of the agents has low cost, pro-

vided that their cost is sufficiently low, which occurs

when cost uncertainty is very large, ∆ > ¯∆. If, instead,

∆ < ¯∆, then the platform sells to customers only when

all
¯N agents participate. The platform’s optimal price

and wage reflect this structure: the platform’s price

reflects that all agents participate when uncertainty is

low, and stochastically fewer agents participate when

uncertainty is high.

Lemma A5 in the appendix characterizes the plat-

form’s optimal price and wage (p∗ , ω∗) in terms of

the correlation of agents’ opportunity costs ρ: when

ρ is small, (p∗ , ω∗) � (pA , ωH); when ρ is moderate,

(p∗ , ω∗) � (pM , ωM); and when ρ is large, (p∗ , ω∗) �
(pA , ωL). The probability that there are “many” low-

cost agents, Pr(NL ≥ j) where j ∈ {d ¯N/2e + 1, d ¯N/2e +
2, . . . , ¯N}, increases with the correlation ρ. Hence,

when the correlation is small, setting a low wage ω ∈
{ωL , ωM} that induces participation of only low-cost

agents is unattractive because the probability that there

are enough low-cost agents to achieve substantial scale

economies is small; instead, the platform sets a high

wage ω � ωH
to induce the participation of all agents.

As correlation increases, it becomes more attractive

to set a low wage ω ∈ {ωL , ωM} that induces partici-

pation of only low-cost agents. When correlation ρ is

very large, the probability that all agents have low cost

Pr(NL � ¯N) � ρ/2 + (1 − ρ)(1/2) ¯N
is substantial, which

makes offering the low wage ω � ωL
that induces par-

ticipation only when all agents have low cost attractive.

3.1. Agent Independence
This section characterizes the impact of agent inde-

pendence on the optimal price. Lemma 4 characterizes

the optimal decisions in the firm–employee business

model (8).

Lemma 4. In the firm–employee business model, the follow-
ing hold: (a)under customer valuationuncertainty, the firm’s
optimal price is p∗I � argmaxp≥0

{p∑
j∈{h , l}λ(V j ,p , ¯N)/2},

and the firm activates ¯N employee agents. (b) Under agent
opportunity cost uncertainty, the firm’s optimal price is
p∗I �pA, and the firm activates ¯N employee agents.
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The agent participation externality implies that cus-

tomer demand λ(V, p , n) is convex in the number of

activated agents n. The result that the firm activates
¯N

employee agents is driven by this convexity and the

assumption the firm activates at least one agent for

any realized customer valuation and agent opportunity

cost. The assumption that the firm activates at least one

agent for any realized customer valuation is satisfied

if and only if customer valuation uncertainty is suffi-

ciently low δ < δa
. The proof of Lemma 4 establishes

that δa ∈ ( ¯δ, v).
Proposition 1 characterizes the impact of agent inde-

pendence on the platform’s optimal price under cus-

tomer valuation uncertainty, and Proposition 2 charac-

terizes it under agent opportunity cost uncertainty.

Proposition 1. Under customer valuation uncertainty,
agent independence decreases the optimal price,

p∗ < p∗I , (10)

if valuation uncertainty is low, δ ≤ ¯δ, and increases the price,

p∗ > p∗I , (11)

if valuation uncertainty is high, δ > ¯δ.

When valuation uncertainty is low (δ ≤ ¯δ), it is opti-
mal to serve all customers, whether or not agents

are independent. When agents are independent, doing

so requires the platform to offer a high wage ω �

¯Nk/λ(V l , p , ¯N), to induce the participation of the

agents even when the realized valuation is low. In

doing so, the platform cedes rents in expectation to

the agents. Decreasing the price allows the platform

to reduce the wage and expected rent paid to each

agent, [λ(V h , p , ¯N)/λ(V l , p , ¯N) − 1]k/2. To see the lat-

ter, observe that if the platform charges a high price

p �V l − ε, where ε is small, then when the realized val-

uation is low, each agent’s demand rate λ(V l , p , ¯N)/ ¯N
will be very low. Consequently, the platform must

offer a very high per-service wage to cover the agent’s

opportunity cost. This results in very high rent being

paid to each agent when the realized valuation is high.

Because decreasing the price allows the platform to

reduce the expected rents paid to agents, agent inde-

pendence pushes the platform to decrease its price.

As valuation uncertainty increases, it becomes in-

creasingly costly for the platform to offer the high

wage required to induce independent agents to serve

low-valuation customers. Consequently, when valua-

tion uncertainty is high (δ > ¯δ), the platform gives up

on serving low-valuation customers (and so charges

a high price), whereas the firm with employee agents

continues to do so (and so charges a low price).

Before addressing the impact of agent independence

under agent opportunity cost uncertainty, we discuss

a property of the equilibrium demand rate, the price

elasticity of demand, −(∂λ(v , p , n)/∂p)(p/(λ(v , p , n))).
It is straightforward to show analytically that the price

elasticity of demand strictly decreases as the num-

ber of agents n increases from 1 to 2. We observed

numerically that the price elasticity of demand strictly

decreases with the number of agents n in each of the

931 parameter combinations of µ � c � 1, v ∈ {2, 3,
. . . , 20}, and n ∈ {2, 3, . . . , 50}.
Proposition 2. Suppose the price elasticity of demand
strictly decreases with the number of agents n. Under agent
opportunity cost uncertainty, agent independence decreases
the optimal price,

p∗ ≤ p∗I , (12)

where the inequality is strict if and only if cost uncertainty
is sufficiently high ∆ > ¯∆.

The intuition for why agent independence strictly

decreases the optimal price when cost uncertainty is

high is twofold. First, when cost uncertainty is high, the

platform induces stochastically fewer agents to partici-

pate. The resulting increase in congestion and delay for

customers due to the loss of scale economies reduces a

customer’s expected utility from seeking service, com-

pelling the platform to reduce the price. Second, when

the platform induces all low-cost agents to participate

provided that there are at least n ∈ {1, . . . , ¯N − 1} of
them, the platform (because of the agent participation

externality) cedes rents to the low-cost agents when

there are strictly more than n of them. Decreasing

the price allows the platform to reduce the expected

rents paid to agents, for the reasons provided following

Proposition 1. (Just as Lemma 3 implies that inequal-

ity (12) is strict when agent uncertainty cost is high,

Lemma A5 implies the same strict inequality when

the correlation of the agents’ opportunity costs ρ is

moderate.)

Because the platform business model is attracting

substantial attention from new ventures launching on-

demand services, and because agent independence is

a defining feature of this model, it is useful to under-

stand how agent independence shapes the platform’s

optimal decisions. Propositions 1 and 2, which are

summarized at the bottom right of Figure 1, provide

guidance to a new venture that is considering offer-

ing an on-demand service with a platform business

model instead of the traditional firm–employee busi-

ness model. They also provide guidance to firms with

the former businessmodel that are considering shifting

to the latter, a path that has been taken by several on-

demand service companies (e.g., Instacart, Munchery,

Shyp; Bensinger 2015, Scheiber 2015). Some platforms

are facing pressure from lawsuits and/or regulatory

agencies to convert independent agents into employ-

ees, and so may be coerced into making this shift

(Bensinger 2015, Scheiber 2015). The price prescrip-

tions depend on the degree of uncertainty in customer
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valuation and agent opportunity cost. For example,

Proposition 1 suggests that a platform shifting to a tra-

ditional firm–employee business model may increase

its price in one geography (where customer sensitivity

to weather states is low) and decrease price in another

(where sensitivity is high).

Propositions 1 and 2 contrast with the finding by

Gurvich et al. (2018) that agent independence al-

ways increases the platform’s optimal price. Contrast-

ing these results illuminates the forces through which

agent independence influences the platform’s price. In

the Gurvich et al. (2018) price-dependent newsven-

dor formulation, the effect of agent independence is

to increase the marginal cost for agents, with the con-

sequence that the platform induces fewer agents to

participate. We observe a similar phenomenon under

cost uncertainty: the platform induces stochastically

fewer agents to participate than the firm with employ-

ees activates. Strikingly, this common phenomenon

of agent independence leading to fewer participat-

ing agents leads to opposite conclusions about the

impact of agent independence on the optimal price—

provided that in the queueing formulation the price

elasticity of expected demand decreases with the num-

ber of agents. The driving force behind this diver-

gence is that in the price-dependent newsvendor for-

mulation, the analogous quantity, the price elasticity

of expected sales, increases with the number of agents.

(More formally, in Gurvich et al. 2018, expected sales

is n − n2/[2D(p)], where D(p) is decreasing and n ∈
[0,D(p)]; therefore, the price elasticity of expected

sales, −np[(∂/∂p)D(p)]/[2D(p)2 − D(p)n], increases

with the number of agents. For the queueing for-

mulation, because every demand is converted into a

sale, “demand” and “expected sales” have the same

meaning.) When the price elasticity quantity increases

(decreases), the revenue-maximizing price decreases

(increases).

To build intuition, consider a platform with few

agents and a fixed price. Having few agents translates

to poor expected service: in the queueing formula-

tion, the lack of scale economies translates to lengthy

expected delays for customers seeking service, and in

the price-dependent newsvendor formulation, the lack

of capacity translates to a low fill rate (i.e., a high

fraction of customers seeking service will be unable

to obtain it). In the queueing formulation, this poor

service discourages customers from seeking service,

whereas in the price-dependent newsvendor formu-

lation, the service level does not influence customer

decisions to seek service. Consequently, in the queue-

ing formulation, it is optimal for the platform with few

agents to set a low price, to encourage customers to

seek service despite the poor service level. In the price-

dependent newsvendor formulation, it is optimal for

the platform with few agents to set a high price, to sell

only to customers with very high valuations.

In sum, Gurvich et al. (2018) demonstrate that cus-

tomer valuation heterogeneity drives agent indepen-

dence to increase the platform’s price. In contrast,

we demonstrate that service-level-dependent demand

drives agent independence to decrease the platform’s

price. To isolate this effect and limit overlap with

Gurvich et al. (2018), we have considered a setting

with homogenous customers. In a formulation cap-

turing both customer heterogeneity and service-level-

dependent demand, we anticipate that agent indepen-

dence may either increase or decrease the optimal

price, depending on the relative strength of these two

factors.

3.2. Delay Sensitivity
This section characterizes the impact customer delay

sensitivity on the platform’s optimal price and wage.

To understand the impact of customer delay sensitiv-

ity, consider the benchmark case where the customer

is insensitive to delay: Under realized valuation V ,

price p, demand rate λ, and n participating agents,

a customer’s expected utility from seeking service is

V − p, provided that the system is stable, λ/(nµ) ≤ 1.

Let (p∗
0
, ω∗

0
) denote the platform’s optimal price and

wage in this benchmark case. Lemma 5 characterizes

the impact of delay sensitivity on the platform’s opti-

mal decisions in the benchmark setting with no uncer-

tainty in the customers’ valuation or agents’ opportu-

nity costs: δ � 0 and ∆� 0.

Lemma 5. In the benchmark setting with no uncertainty in
the customers’ valuation or agents’ opportunity costs, the
following hold:

(a) delay sensitivity decreases the platform’s optimal price
and increases the optimal wage:

p∗ < p∗
0
, (13)

ω∗ > ω∗
0
. (14)

(b) If ¯N ∈ {1, 2}, then the platform’s optimal price p∗
decreases and the optimal wage ω∗ increases with the delay
disutility c.

Because delay sensitivity reduces expected utility

for customers (directly, through waiting) and agents

(indirectly, through idleness), the platform responds

to delay sensitivity by decreasing the per-service price

(to encourage participation of customers) and increas-

ing the per-service wage (to encourage participation

of agents). While Lemma 5(a) compares the extreme

cases of delay insensitive and delay sensitive cus-

tomers, Lemma 5(b) establishes a parallel result in

terms of the delay disutility parameter c. To supple-

ment Lemma 5(b), we conducted a numerical study:

we observed that p∗ decreases and ω∗ increases with c
in each of the 960 parameter combinations of µ � k � 1,

v � 10, c ∈ {1, 2, . . . , 20}, and ¯N ∈ {3, 4, . . . , 50}.



Taylor: On-Demand Service Platforms
Manufacturing & Service Operations Management, 2018, vol. 20, no. 4, pp. 704–720, ©2018 INFORMS 713

The remainder of this section explains how and why

the results in Lemma 5 break when there is uncertainty

in the customers’ valuation or the agents’ opportunity

costs. Before doing so, we highlight that the assump-

tion that need for service is abundant (inequality (1))

drives several of the benchmark-setting results: when

inequality (1) is violated, inequality (13) continues to

hold, but there exist parameters under which the other

elements of Lemma 5 are reversed.

Lemma 6 characterizes the platform’s optimal deci-

sions in the benchmark case where customers are

insensitive to delay. Let
¯δ

0
� (vµ − k)/(3µ) and ˜∆

0
�

(vµ− k)/3.
Lemma 6. In the benchmark case where customers are
insensitive to delay, the following hold:
(a) under customer valuation uncertainty, the platform’s

optimal wage is ω∗
0
� k/µ; the optimal price is p∗

0
� V l if

δ ≤ ¯δ
0
, and p∗

0
� V h otherwise.

(b) Under agent opportunity cost uncertainty, p∗
0
� v;

ω∗
0
� KH/µ if ∆ ≤ ˜∆

0
, and ω∗

0
� KL/µ otherwise.

What is the impact of customer delay sensitivity

on the platform’s optimal price and wage, under cus-

tomer valuation uncertainty? As in the benchmark set-

ting without uncertainty, delay sensitivity increases

the optimal wage (inequality (14)). Proposition 3(a)

establishes that the benchmark-setting result that

delay sensitivity decreases the optimal price (inequal-

ity (13)) is reversed when customer valuation uncer-

tainty is moderate δ ∈ (
¯

δ, ¯δ
0
]. The proof of Proposi-

tion 3 shows that

¯

δ < ¯δ
0
if and only if

¯δ < ¯δ
0
and

[ph −V l]|δ� ¯δ
0

> 0. We observed numerically that

¯

δ < ¯δ
0

in each of the 931 parameter combinations of µ � c �

k � 1, v ∈ {2, 3, . . . , 20}, and ¯N ∈ {2, 3, . . . , 50}. Simi-

larly, Proposition 3b identifies conditions under which

the benchmark-setting result that the platform’s opti-

mal wage p∗ decreases with the delay disutility c
(Lemma 5(b)) is reversed.

Proposition 3. Under customer valuation uncertainty, the
following hold:
(a) delay sensitivity increases the platform’s optimal price,

p∗ > p∗
0
, (15)

if and only if valuation uncertainty is moderate δ ∈ (
¯

δ, ¯δ
0
].

(b) If δ < ¯δ
0
, then there exist cl , cm , and ch such that

0 < cl < cm < ch and p∗ |c∈[cl , cm ] < p∗ |c∈(cm , ch ].

The implication is that a platform interested in how

customer delay sensitivity impacts its price decision

should be wary of employing a naive intuition that

such sensitivity compels a lower price; the opposite

is true when customer valuation uncertainty is mod-

erate. To understand why delay sensitivity increases
the platform’s optimal price in this case, observe that

as valuation uncertainty increases, it becomes increas-

ingly costly for the platform to offer the high wage

required to induce agents to serve low-valuation cus-

tomers. Furthermore, delay sensitivity reduces the

marginal revenue from serving low-valuation cus-

tomers. Consequently, when valuation uncertainty is

moderate, the platform facing delay-sensitive cus-

tomers gives up on serving low-valuation customers

(and so charges a high price), whereas the platform

facing delay-insensitive customers continues to do so

(and so charges a low price). (In contrast, if valua-

tion uncertainty is extreme (δ ≤
¯

δ or δ > ¯δ
0
), then the

platform’s optimal decision of whether to give up on

serving low-valuation customers is the same regard-

less of whether customers are sensitive to delay. Conse-

quently, the benchmark-setting result, inequality (13),

continues to hold.)

What is the impact of customer delay sensitivity on

the platform’s optimal price and wage, under agent

opportunity cost uncertainty? As in the benchmark set-

ting without uncertainty, delay sensitivity decreases

the optimal price (inequality (13)). Proposition 4(a)

establishes that the benchmark-setting result that delay

sensitivity increases the optimal wage (inequality (14))

is reversed when opportunity cost uncertainty ∆ is

high and the expected cost is moderate k ∈ (
¯

k , ¯k), where

¯

k � min(Pr(NL < ¯N)RA
, RA − RM(pM(1), 1))/(2 ¯N) and

¯k � vµ/4. A sufficient condition for

¯

k < ¯k is that cor-

relation ρ > ρ̄ for some ρ̄ < 1 when
¯N ≥ 2;

¯

k < ¯k if

¯N � 1. We observed numerically that

¯

k < ¯k in each of

the 2,793 parameter combinations of µ � c � k � 1, ρ ∈
{0, 0.25, 0.75}, v ∈ {2, 3, . . . , 20}, and ¯N ∈ {2, 3, . . . , 50}.
Similarly, Proposition 4(b) identifies conditions under

which the benchmark-setting result that the platform’s

optimal wage ω∗ increases with the delay disutility c
(Lemma 5(b)) is reversed. Let ∆̆

0
� (vµ− k)Pr(NL < ¯N)/

[1+Pr(NL � ¯N)].
Proposition 4. Under agent opportunity cost uncertainty,
the following hold:

(a) if the expected agent opportunity cost is moderate,
k ∈ (

¯

k , ¯k), and cost uncertainty is high, ∆ > ˜∆, where ˜∆ < k,
then delay sensitivity decreases the platform’s optimal wage,

ω∗ < ω∗
0
.

(b) There exists ρ̄ < 1 such that if ρ > ρ̄ and ∆ < ∆̆
0
,

then there exist cl , cm , and ch such that 0 < cl < cm < ch and
ω∗ |c∈[cl , cm ] > ω

∗ |c∈(cm , ch ).
The implication is that a platform interested in how

customer delay sensitivity impacts its wage decision

should be wary of employing a naive intuition that

such sensitivity, by reducing the utilization of agents,

compels a higher wage. To understand when and why

this intuition fails, consider the case where agent cost

uncertainty is high, ∆ > ˜∆. Then it is quite costly

for the platform to induce high-cost agents to partic-

ipate. When the expected agent opportunity cost is

sufficiently high, k >
¯

k, in the base case with delay-

sensitive customers, the marginal revenue generated
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Table 2. Examples of Platforms’ On-Demand Service

Offerings

Customer sensitivity to delay

High Low

Restaurant food delivery Consumer goods delivery

Taxi-style transportation Home services

by an incremental agent is too low for the platform to

incur the high cost to induce high-cost agents to partic-

ipate, and the platform offers a low wage. Eliminating

customer delay sensitivity increases this marginal rev-

enue, which makes it optimal for the platform to offer

the high wage required to induce all agents to partic-

ipate, provided that the expected agent opportunity

cost is not too high, k < ¯k. Thus, if the agent opportu-

nity cost uncertainty is high, ∆ > ˜∆, and the expected

opportunity cost is moderate, k ∈ (
¯

k , ¯k), then delay sen-

sitivity decreases the optimal wage.

Propositions 3 and 4, which are summarized at the

top right of Figure 1, may provide directional guidance

for how a platform should change its price and wage

when its customers’ delay sensitivity changes. For

example, customers’ sensitivity to delay may increase

as customers grow acclimated to the service and

become more demanding. Alternatively, a platform

may shift its offering to a service that differs in cus-

tomer delay sensitivity. (Table 2 classifies on-demand

service offerings by customer delay sensitivity.) For

example, the platform Sidecar initially provided taxi-

style transportation, but later shifted to consumer

goods delivery, where customers tend to be less sensi-

tive to delay (MacMillan 2015, Wang 2015). Similarly,

the platform Postmates initially provided restaurant

food delivery, but later expanded to consumer goods

delivery, where customers tend to be less sensitive to

delay (Ruggless 2015). The platform TaskRabbit ini-

tially provided home services (e.g., repair, cleaning) in

a scheduled fashion, but later shifted to offering ser-

vices on-demand (Solomon 2016).

4. Discussion
This paper examines how two defining features of an

on-demand service platform—customer delay sensi-

tivity and agent independence—shape the platform’s

price and wage decisions. By reducing expected util-

ity for customers and agents, customer delay sensi-

tivity decreases the optimal price and increases the

optimal wage—provided that the customers’ valua-

tion and agents’ opportunity costs are deterministic.

However, uncertainty in either dimension can reverse

these results: Delay sensitivity increases the optimal

price when customer valuation uncertainty is mod-

erate. Delay sensitivity decreases the optimal wage

when agent opportunity cost uncertainty is high and

expected opportunity cost is moderate. The intuition is

that delay sensitivity decreases the marginal revenue

from serving low-valuation customers and from induc-

ing high-cost agents to participate. Consequently, delay

sensitivity prompts the platform to give up on serving

low-valuation customers (and thus charge a high price)

and give up on inducing high-cost agents to participate

(and thus offer a low wage).

Two forces push agent independence to decrease the

price. First, by reducing agent idleness, decreasing

the price allows the platform to reduce the wage and

expected rent paid to each agent. Second, because agent

independence makes it more costly for the platform

to induce agent participation, the platform induces

fewer agents to work. Compensating customers for

the degraded service pushes the platform to decrease

the price. A distinct force pushes agent independence

to increase the price: Agent independence makes it

costly for the platform to induce agents to serve low-

valuation customers,which pushes the platform to give

up on serving these customers (and so charge a high

price). The collective result of these three forces is that

under agent opportunity cost uncertainty, agent inde-

pendence decreases the price, strictly so if cost uncer-

tainty is high. Under customer valuation uncertainty,

agent independence strictly decreases the price if and

only if valuation uncertainty is sufficiently low.

Thus, a central message is that agent independence

strictly decreases the price if agent opportunity cost

uncertainty is high or valuation uncertainty is low. This

message, established when uncertainty is present on

either the customer or agent side, is preserved when

there is joint uncertainty of the following form: when

the weather is “bad,” all customers have a high valua-

tion, and all agents have a high opportunity cost; when

the weather is “good,” all customers have a low valua-

tion, and all agents have a low opportunity cost. Then,

under high opportunity cost uncertainty and low val-

uation uncertainty, agent independence decreases the

price. See the online supplement for a formal analysis

and proof.

Our assumption that the platform must commit to

its price and wage in advance drives some of our

results. If, instead, the platform sets its price and wage

after observing the system state, the benchmark result

that delay sensitivity decreases the optimal price is

restored. The results under opportunity cost uncer-

tainty are robust: delay sensitivity can increase or

decrease the optimal wage, and agent independence

decreases the optimal price. However, the results under

valuation uncertainty differ: the optimal price is invari-

ant to whether agents are independent.
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Appendix
Lemma A1, which provides properties of the equilibrium

demand rate λ(V, p , n) under n agents and realized valua-

tion V , is useful in the proofs of Lemmas A2, A4, 3, 4 and 6

and Propositions 2 and 3.

Lemma A1. (a) The equilibrium demand allocated to each agent
λ(V, p , n)/n strictly increases with the number of agents n.

(b) (∂/∂p)λ(V,p ,n) < 0, (∂2/∂p2)λ(V,p ,n) < 0, (∂/∂V) ·
λ(V,p ,n)>0, and (∂2/∂p∂V)λ(V,p ,n)>0.

(c) The price elasticity of demand, −(∂λ(V,p ,n)/∂p) ·
(p/(λ(V,p ,n))), strictly decreases with the customers’ valuationV .

Proof of Lemma A1. (a) For the M/M/n system, the traffic

intensity is λ/nµ. Thus, if λ � θn, where θ ∈ (0, µ), then the

traffic intensity is θ/µ. For fixed traffic intensity, expected

waiting time W(θn , n) strictly decreases with the number of

agents n. Let γ(n) denote the value of γ that satisfies V − p −
cW(γn , n)� 0. Note γ(n)� λ(V, p , n)/n. For n

2
> n

1
,

W(γ(n
2
)n

2
, n

2
)� (V − p)/c � W(γ(n

1
)n

1
, n

1
)

>W(γ(n
1
)n

2
, n

2
), (A.1)

where the equalities follow from the definition of γ(·) and the

inequality follows becauseW(θn ,n) strictly decreaseswith n.
Inequality (A.1), together with the fact that W(θn ,n) strictly
increases with θ, implies that γ(n

2
)>γ(n

1
).

(b) By the implicit function theorem, (∂/∂p)λ(V,p ,n)�
−1/[c(∂/∂λ)W(λ,n)]|λ�λ(V,p ,n) < 0 and (∂2/∂p2)λ(V,p ,n) �
−(∂2/∂λ2)W(λ,n)/{c2 × [(∂/∂λ)W(λ,n)]3}|λ�λ(v ,p ,n) < 0,

where the inequalities followbecauseW(λ,n) is a strictly con-
vex function, strictly increasing in λ. Furthermore, we have

(∂/∂V)λ(V,p ,n)�−(∂/∂p)λ(V,p ,n) and (∂2/∂p∂V)λ(V,p ,n)�
−(∂2/∂p2)λ(V,p ,n).

(c) Note

∂
∂V

[
−
∂λ(V, p ,n)

∂p
p

λ(V, p ,n)

]
�

p
λ(V, p ,n)2

[
∂λ(V, p ,n)

∂V
∂λ(V, p ,n)

∂p
−λ(V, p ,n)

∂2λ(V, p ,n)
∂p∂V

]
< 0,

where the inequality follows from part (b). �

For use in the statements and/or proofs of Lemmas A2,

2, and 4 and Proposition 3, let Πa(p) � p
∑

j∈{h , l} λ(V j , p , ¯N)/
2 − ¯Nk, Πh(p) � [pλ(V h , p , ¯N) − ¯Nk]/2 and Πl(p) � [p − ¯Nk/
λ(V l , p , ¯N)] ×∑

j∈{h , l} λ(V j , p , ¯N)/2. Let p j ∈ arg maxp≥0
Π j(p)

and Π j �Π j(p j) for j ∈ {a , h , l}. (Note these definitions of ph

and p l
are consistent with those provided in body of the

paper.) Lemma A2, which establishes properties of these

functions and quantities, is useful in the proofs of Lemmas 2,

A3, and 4 and Proposition 1.

Lemma A2. (a) Π j(p) is strictly concave for j ∈ {a , h}.
(b) ph > pa > p l .
(c) (∂/∂δ)Πh >max((∂/∂δ)Πa , (∂/∂δ)Πl).

Proof of Lemma A2. (a) Note that

(∂2/∂p2)Πa(p)�
∑

j∈{h , l}

[
p(∂2/∂p2)λ(V j , p , ¯N)/2

+ (∂/∂p)λ(V j , p , ¯N)
]
< 0,

where the inequality follows from Lemma A1(b). That Πh(p)
is strictly concave in p follows by parallel argument.

(b) Note that

(∂/∂p)Πh(p)
� λ(V h , p , ¯N){1+ [(∂/∂p)λ(V h , p , ¯N)]p/λ(V h , p , ¯N)}/2

(∂/∂p)Πa(p)� (∂/∂p)Πh(p)+ λ(V l , p , ¯N)
· {1+ [(∂/∂p)λ(V l , p , ¯N)]p/λ(V l , p , ¯N)}/2.

Therefore,

(∂/∂p)Πa(p)|p�ph

� λ(V l , ph , ¯N){1+ [(∂/∂p)λ(V l , ph , ¯N)]ph/λ(V l , ph , ¯N)}/2
< λ(V h , ph , ¯N){1+ [(∂/∂p)λ(V h , ph , ¯N)]ph/λ(V h , ph , ¯N)}/2
� 0, (A.2)

where the inequality follows from Lemma A1(b) and A1(c),

and the equalities follow because ph
satisfies the first order

condition (∂/∂p)Πh(p) � 0. Because Πa(p) is strictly concave

in p (by part (a)), (A.2) implies ph > pa
. It remains to show

that pa > p l
. Note that Πl(p) � Πa(p) − f (p), where f (p) �

[λ(V h , p , ¯N)/λ(V l , p , ¯N) − 1] ¯Nk/2. Furthermore,

∂ f (p)
∂p

�
λ(V h , p , ¯N)
pλ(V l , p , ¯N)

[
∂λ(V h , p , ¯N)

∂p
p

λ(V h , p , ¯N)

−
∂λ(V l , p , ¯N)

∂p
p

λ(V l , p , ¯N)

]
¯Nk
2

> 0, (A.3)

where the inequality follows from Lemma A1(c). It imme-

diately follows that (∂/∂p)Πl(p)|p�pa < 0, so pa , p l
. Further-

more, f (pa) − f (p l) > Πa(pa) − Πa(p l) > 0, where the first

inequality holds because p l
maximizes Πl(p), and the sec-

ond inequality holds because pa
maximizes Πa(p). Together,

f (pa) > f (p l) and inequality (A.3) imply pa > p l
.

(c) Next we show that (∂/∂δ)Πh > (∂/∂δ)Πa
. To see this,

observe that

(∂/∂p)[p(∂/∂V)λ(V h , p , ¯N)]
� (∂/∂V)λ(V h , p , ¯N)+ p(∂2/∂p∂V)λ(V h , p , ¯N) > 0, (A.4)

where the inequality follows by Lemma A1(b). Furthermore,

(∂/∂δ)Πh
� ph(∂/∂V)λ(V h , ph , ¯N)/2
> pa(∂/∂V)λ(V h , pa , ¯N)/2
> pa[(∂/∂V)λ(V h , pa , ¯N)− (∂/∂V)λ(V l , pa , ¯N)]/2
� (∂/∂δ)Πa ,

where the first inequality follows from (A.4) and ph > pa

(from part (b)), and the second inequality follows from

Lemma A1(b). It remains to show that (∂/∂δ)Πh > (∂/∂δ)Πl
.

Note that

(∂/∂δ)Πh
� ph(∂/∂V)(V h , ph , ¯N)/2 > p l[(∂/∂V)(V h , p l , ¯N)/2
> {p l(∂/∂V)(V h , p l , ¯N) − p l(∂/∂V)(V l , p l , ¯N)
− ¯Nk

∑
(i , j)∈{h , l}2 , i, j

[(∂/∂V)(V i , p l , ¯N)]

× λ(V j , p l , ¯N)/λ(V l , p l , ¯N)2}/2 � (∂/∂δ)Πl ,
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where the first inequality follows from (A.4) and ph > p l

(from part (b)), and the second inequality follows from

Lemma A1(b). �

Lemma A3, which characterizes the platform’s optimal

price andwage as a function of the delay disutility c, is useful
in the proof of Proposition 3(b). Let

¯δ
0
� (vµ− k)/(3µ).

Lemma A3. Under customer valuation uncertainty, if δ < ¯δ
0
,

then there exist
¯

c and c̄ such that 0 <
¯

c ≤ c̄ and the platform’s opti-
mal price and wage are (p∗ , ω∗) � (p l , ωl) if c ≤

¯

c and (p∗ , ω∗) �
(ph , ωh) if c > c̄.

Let
¯δ denote the value of δ such that Πh �Πl

; the proof of

Lemmas 2 and A3 establishes that
¯δ is unique.

Proof of Lemmas 2 and A3. The proof proceeds in three

steps. The first step establishes that, in terms of identifying

an optimal price and wage, the set of prices and wages can

be reduced to two candidates. The second step completes the

proof of Lemma 2, and the third step completes the proof

Lemma A3.

Step 1.We first characterize the equilibrium number of par-

ticipating agents N(V,NL) under various wages, prices, and

realized valuations V . Because all agents have opportunity

cost k, we drop the second argument of N (V l ,NL). If price
p < V l

and wage ω ≥ ¯Nk/λ(V l , p , ¯N), then N (V) � ¯N for V ∈
{V h ,V l}. If p <V h

and ω ∈ [ ¯Nk/λ(V h , p , ¯N), ¯Nk/λ(V l , p , ¯N)),
then N (V h) � ¯N and N (V l) � 0. Otherwise, N (V) � 0,

for V ∈ {V h ,V l}. Consequently, we can restrict atten-

tion to two wages ω ∈ { ¯Nk/λ(V j , p , ¯N)} j∈{h , l}. Under ω �

¯Nk/λ(V j , p , ¯N), the platform’s objective function, Π j(p), is
maximized at price p � p j

for j ∈ {h , l}. Thus, the set of prices
andwages can be reduced to two candidates: (p , ω)� (p j , ω j),
with corresponding expected profit rate Π j

for j ∈ {h , l}.
Step 2. As δ→ 0, Πh → [pAλ(v , pA , ¯N) − ¯Nk]/2 and Πl →

pAλ(v , pA , ¯N) − ¯Nk, where pA ∈ arg maxp≥0
{pλ(v , p , ¯N)}.

Because the platform’s expected profit rate under the

optimal price and wage, max(Πh ,Πl), is strictly posi-

tive, pAλ(v , pA , ¯N) − ¯Nk > 0; therefore, as δ → 0, Πh −
Πl → −[pAλ(v , pA , ¯N) − ¯Nk]/2 < 0. As δ → v, Πh →
[phλ(2v , ph , ¯N) − ¯Nk]/2 > 0 and Πl → −∞ because

λ(V l , p l , ¯N) → 0. These observations, together with the

inequality (∂/∂δ)Πh > (∂/∂δ)Πl
(by LemmaA2(c)) imply that

there exists a unique δ ∈ (0, v), namely,
¯δ, such that Πh �Πl

.

Furthermore, Πh ≤Πl
if and only if δ ≤ ¯δ.

Step 3. As c→ 0,Πl→(V lµ− k) ¯N andΠh→(V hµ− k) ¯N/2.
Therefore, δ < ¯δ

0
implies limc→0

[Πl −Πh]> 0. BecauseΠh
and

Πl
are continuous in c, there exists

¯

c > 0 such that Πl > Πh

if c ∈ (0,
¯

c). Let ca � sup{c: Πa ≥ Πh}. With a little effort, one

can show that our assumption that the firm activates at least

one employee agent, for any realized valuation V , implies

that c ≤ ca
. Because Πh

and Πa
are continuous in c, at c � ca

,

Πh � Πa
. Therefore, because Πa > Πl

, at c � ca
, Πh > Πl

.

Because Πh
and Πl

are continuous in c, there exists c̄ < ca

such that if c ∈ (c̄ , ca], then Πh >Πl
. �

For use in the statements and/or proofs of Lemmas A4

and 3 and Propositions 2 and 4, let ΠH � RA − ¯NKH
, ΠL �

Pr(NL � ¯N)[RA − ¯NKL], andΠM �ΠM(pM , nM). Lemma A4 is

useful in the proof of Lemma 3.

Lemma A4. (a) lim∆→0
[ΠH −max(ΠL ,ΠM)] > 0.

(b) lim∆→k[ΠM −ΠH] > 0 if and only if k > ˜k. Furthermore,
lim∆→k[ΠM −ΠL] ≥ 0, where the inequality is strict if and only if
ρ < 1.

Proof of Lemma A4. (a) Note lim∆→0
ΠH � RA − ¯Nk and

lim∆→0
ΠL � Pr(NL � ¯N)[RA − ¯Nk]. Because Pr(NL � ¯N) < 1,

lim∆→0
[ΠH −ΠL] > 0. It remains to show that lim∆→0

[ΠH −
ΠM] > 0. Recall that nM < ¯N . Note

lim

∆→0

ΠM
�max

p≥0

{
[p−nM k/λ(v ,p ,nM)]

¯N∑
j�nM

Pr(NL
� j)λ(v ,p , j)

}
≤

¯N∑
j�nM

Pr(NL
� j)max

p≥0

{[p−nM k/λ(v ,p ,nM)]λ(v ,p , j)}

<
¯N∑

j�nM

Pr(NL
� j)max

p≥0

{pλ(v ,p , j)− jk}

<
¯N∑

j�nM

Pr(NL
� j)max

p≥0

{pλ(v ,p , ¯N)− ¯Nk}≤ lim

∆→0

ΠH ,

where the second inequality follows because nM/λ(v , p ,
nM) > j/λ(v , p , j) for j > nM

(from Lemma A1(a)), and

the third inequality follows because j[pλ(v , p , j)/ j − k] <
¯N[pλ(v , p , ¯N)/ ¯N − k] for j < ¯N , which holds because

λ(v , p , j)/ j < λ(v , p , ¯N)/ ¯N (from Lemma A1(a)).

(b) Note lim∆→kΠ
H � RA − 2

¯Nk and lim∆→kΠ
M � RM(1).

Therefore, lim∆→k[ΠM − ΠH] > 0 if and only if k > ˜k. Fur-
thermore, lim∆→kΠ

L �Pr(NL � ¯N)RA �maxp≥0
RM(p , ¯N), and

lim∆→kΠ
M � maxp≥0

RM(p , 1). Because RM(p , 1) ≥ RM(p , ¯N),
where the inequality is strict if and only if ρ < 1,

lim∆→k[ΠM −ΠL] ≥ 0, where the inequality is strict if and only

if ρ < 1. �

Lemma A5. Under agent opportunity cost uncertainty, the plat-
form’s optimal price and wage are (p∗ , ω∗) � (pA , ωH) if ρ ≤ ρl ,
(p∗ , ω∗) � (pM , ωM) if ρ ∈ (ρl , ρh], and (p∗ , ω∗) � (pA , ωL) if
ρ > ρh , where ρl ≤ ρh .

Lemma A6, which characterizes the platform’s optimal

price and wage as a function of the delay disutility c, is use-
ful in the proof of Proposition 4(b). Let ∆̆

0
� (vµ− k)Pr(NL <

¯N)/[1+Pr(NL � ¯N)].
Lemma A6. Under agent opportunity cost uncertainty, there
exists ρ̄ < 1 and c̄ such that if ρ > ρ̄, then the platform’s optimal
price is p∗ � pA, and the platform’s optimal wage is ω∗ �ωH if c ≤ c̄
and ω∗ � ωL if c > c̄. Furthermore, c̄ > 0 if and only if ∆ < ∆̆

0
.

Proof of Lemmas 3, A5, and A6. The proof proceeds in four

steps. The first step establishes that, in terms of identify-

ing an optimal price and wage, the set of prices and wages

can be reduced to three candidates. The second step com-

pletes the proof of Lemma 3, the third step completes the

proof Lemma A5, and the fourth step completes the proof

Lemma A6.

Step 1. We first characterize the equilibrium number of

participating agents N (v ,NL) under various wages and

realizations of NL
, for any price p < v. If the wage

ω ≥ ¯NKH/λ(v , p , ¯N), then N (v ,NL) � ¯N . If ω ∈ [nKL/
λ(v , p , n), ¯NKH/λ(v , p , ¯N)) for n ∈ {1, . . . , ¯N} and NL ≥ n,
then N (v ,NL) � NL

(because all low-cost and no high-cost

agents participate). Otherwise, N (v ,NL) � 0. Consequently,

we can restrict attention to wages ω ∈ { ¯NKH/λ(v , p , ¯N),
¯NKL/λ(v , p , ¯N), nKL/λ(v , p , n)}, where n ∈ {1, . . . , ¯N − 1}.
Under ω� ¯NKH/λ(v , p , ¯N), the platform’s objective function,

pλ(v , p , ¯N) − ¯NKH
, is maximized at price p � pA

, yielding
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expected profit rateΠH
. Similarly, under ω� ¯NKL/λ(v , p , ¯N),

the platform’s objective function, Pr(NL � ¯N)[pλ(v , p , ¯N) −
¯NKL], is maximized at price p � pA

, yielding expected profit

rate ΠL
. Under ω � nKL/λ(v , p , n) < ¯NKH/λ(v , p , ¯N), where

n ∈ {1, . . . , ¯N−1}, the platform’s objective function,ΠM(p , n),
is maximized at (p , n) � (pM , nM), yielding expected profit

rate ΠM
. Note that if nM KL/λ(v , pM , nM) ≥ ¯NKH/λ(v , p , ¯N),

thenΠH >ΠM
. To summarize, the set of prices andwages can

be reduced to three candidates: (p , ω) � (pA , ω j), with corre-

sponding expected profit rate Π j
, for j ∈ {H, L}, and (p , ω) �

(pM , ωM), with corresponding rate ΠM
.

Step 2. Suppose k ≤ ˜k. Then, lim∆→k[ΠH −max(ΠM ,ΠL)] ≥ 0

(by Lemma A4(b)). BecauseΠH
strictly decreases with ∆ and

Π j
strictly increases with ∆ for j ∈ {L,M}, this implies that

ΠH >max(ΠM ,ΠL) for ∆ ∈ (0, k); that is, (p∗ , ω∗)� (pA , ωH) for
∆ ∈ (0, k). For the remainder of this proof, suppose instead

that k > ˜k. Note Pr(NL � ¯N) � ρ/2 + (1 − ρ)(1/2) ¯N
. Suppose

ρ � 1. Then Pr(NL � ¯N)� Pr(NL � 0)� 1/2. Furthermore,

ΠM
� [pM − nM KL/λ(v , pM , nM)]λ(v , pM , ¯N)/2
< [pMλ(v , pM , ¯N) − ¯NKL]/2
≤ [pAλ(v , pA , ¯N) − ¯NKL]/2 �ΠL , (A.5)

where the first inequality follows because nM < ¯N
implies λ(v , pM , nM)/nM < λ(v , pM , ¯N)/ ¯N (by LemmaA1(a)).

Inequality (A.5) implies that p∗ � pA
. Because ΠH

strictly

decreases with ∆, ΠL
strictly increases with ∆, lim∆→0

[ΠH −
ΠL] > 0 (by Lemma A4(a)), and lim∆→k[ΠH − ΠL] < 0 (by

LemmaA4(b)), there exists

¯

∆ ∈ (0, k) such thatΠH ≥ΠL
if and

only if ∆≤
¯

∆; that is, ω∗ �ωH
if ∆≤

¯

∆, and ω∗ �ωL
otherwise.

For the remainder of this proof suppose instead that ρ < 1.

First, we establish that

(∂/∂∆)ΠM > (∂/∂∆)ΠL . (A.6)

To do so, we establish that (∂/∂∆)ΠM(pM(n), n)) > (∂/∂∆)ΠL

for n ∈ {1, . . . , ¯N − 1}. Note

(∂/∂∆)ΠM(pM(n), n)

�

¯N∑
j�n

Pr(NL
� j)λ(v , pM(n), j)n/λ(v , pM(n), n)

> Pr(NL
� ¯N)λ(v , pM(n), ¯N)n/λ(v , pM(n), n)

> Pr(NL
� ¯N) ¯N � (∂/∂∆)ΠL , (A.7)

where the second inequality holds because n < ¯N implies

λ(v , pM(n), n)/n < λ(v , pM(n), ¯N)/ ¯N (by Lemma A1(a)).

Inequality (A.7) implies (A.6). Because ΠH
strictly decreases

with ∆, max(ΠL ,ΠM) strictly increases with ∆, lim∆→0
[ΠH −

max(ΠL ,ΠM)] > 0 (by Lemma A4(a)), and lim∆→k[ΠH −
max(ΠL ,ΠM)] < 0 (by Lemma A4(b)), there exists

¯

∆ ∈ (0, k)
such thatΠH ≥max(ΠL ,ΠM) if and only if∆≤

¯

∆. Therefore, if

∆≤
¯

∆, then (p∗ , ω∗)� (pA , ωH). Because inequality (A.6) holds

and lim∆→k[ΠM−ΠL]> 0 (by LemmaA4(b)), there exists ∆̆< k
such that ΠM > ΠL

if and only if ∆ > ∆̆. Let ¯∆ � max(
¯

∆, ∆̆).
If ∆ ∈ (

¯

∆, ¯∆], then (p∗ , ω∗) � (pA , ωL). If ∆ > ¯∆, then (p∗ , ω∗) �
(pM , ωM).

Step 3. It is sufficient to show that

0 � (∂/∂ρ)ΠH < (∂/∂ρ)ΠM < (∂/∂ρ)ΠL . (A.8)

The equality is immediate. BecauseΠM � Γ{∑ ¯N−1

j�nM

(
¯N
j

)
(1−ρ) ·

(1/2) ¯Nλ(v , pM , j) + [ρ/2 + (1 − ρ)(1/2) ¯N ]λ(v , pM , ¯N)}, where

Γ� [pM − nM KL/λ(v , pM , nM)],
(∂/∂ρ)ΠM

� Γ

{
[1/2− (1/2) ¯N ]λ(v , pM , ¯N) − (1/2) ¯N

¯N−1∑
j�nM

(
¯N
j

)
λ(v , pM , j)

}
> Γ

{
1/2− (1/2) ¯N − (1/2) ¯N

¯N−1∑
j�1

(
¯N
j

)
j/ ¯N

}
λ(v , pM , ¯N)� 0,

(A.9)

where the inequality follows because λ(V, p , n)/n strictly

increases with n (by Lemma A1(a)) and because nM ≥ 1. This

establishes the first inequality in (A.8). Because ΠL � [ρ/2 +

(1− ρ)(1/2) ¯N ][pAλ(v , pA , ¯N) − ¯NKL],

(∂/∂ρ)ΠL
� [1/2− (1/2) ¯N ][pAλ(v , pA , ¯N) − ¯NKL]
> [1/2− (1/2) ¯N ][pMλ(v , pM , ¯N)
− nM KLλ(v , pM , ¯N)/λ(v , pM , nM)] > (∂/∂ρ)ΠM ,

where the first inequality follows because λ(V, p , n)/n strictly

increases with n (by Lemma A1(a)), and the second inequal-

ity follows from (A.9). This completes the proof of (A.8).

Step 4. First, we show that there exists ρ̄ < 1 such that

if ρ > ρ̄, then ΠL > ΠM
. We establish in the proof of

Proposition 2 that pA , pM
. Therefore, ΠL > [ρ/2 + (1 − ρ) ·

(1/2) ¯N ][pMλ(v , pM , ¯N) − ¯NKL], which implies

ΠL −ΠM > [ρ/2+ (1− ρ)(1/2) ¯N ]
· [nMλ(v , pM , ¯N)/λ(v , pM , nM) − ¯N]KL

− (1− ρ)Γ
¯N−1∑

j�nM

(
¯N
j

)
(1/2) ¯Nλ(v , pM , j). (A.10)

Because nM < ¯N , nM/λ(v , pM , nM) > ¯N/λ(v , pM , ¯N) (by

Lemma A1(a)), which implies that the second term in square

brackets on the right-hand side of (A.10) is strictly positive.

Therefore, limρ→1
[ΠL − ΠM] > 0. Because Π j

is continuous

in ρ for j ∈ {H, L}, this implies that there exists ρ̄ < 1 such

that if ρ > ρ̄, then ΠL >ΠM
. For the remainder of this proof,

suppose that ρ > ρ̄. This implies p∗ � pA
. Note that

(∂/∂c)ΠH
� (∂/∂c)RA < Pr(NL

� ¯N)(∂/∂c)RA

� (∂/∂c)ΠL . (A.11)

Our assumption that the platform’s expected profit rate is

strictly positive implies that RA > ¯NKL
. Because RA

is strictly

decreasing in c and limc→∞ RA � 0, there exists cH
such that

RA > ¯NKH
if and only if c < cH

. Furthermore, (A.11) implies

that there exists c̄ < cH
such that ΠH <ΠL

if and only if c > c̄.
Note that limc→0

[ΠH −ΠL] � ¯N{(vµ − k)Pr(NL < ¯N) −∆[1 +

Pr(NL � ¯N)]}, which is strictly positive if and only if ∆ < ∆̆
0
.

Therefore, c̄ > 0 if and only if ∆ < ∆̆
0
. �

Let δa
denote the value of δ such that Πh �Πa

; the proof

of Lemma 4 establishes that δa
is unique.

Proof of Lemma 4. (a) After setting price p and observ-

ing realized valuation V , the firm’s employee-agent acti-

vation problem is maxn∈{0,1,..., ¯N}{pλ(V, p , n) − nk}. Because
λ(V, p , n)/n strictly increases with n (by Lemma A1(a)),

arg max

n∈{0,1,..., ¯N}
{pλ(V, p , n) − nk} �

{
¯N if k < pλ(V, p , ¯N)/ ¯N,

0 otherwise.
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If k ≥ pλ(V h , p , ¯N)/ ¯N , then it is never optimal for the firm to

activate an agent. Because, by assumption, the firm activates

at least one agent for any realized customer valuation, this

implies that there exists p ≥ 0 such that k < pλ(V h , p , ¯N)/ ¯N
and that the optimal p satisfies this inequality. Under p satis-

fying k < pλ(V l , p , ¯N)/ ¯N , the firm’s objective function,Πa(p),
is maximized at p � pa

, yielding expected profit rate Πa
.

Under p satisfying k ∈ [pλ(V l , p , ¯N)/ ¯N, pλ(V h , p , ¯N)/ ¯N), the
firm’s objective function,Πh(p), is maximized at p � ph

, yield-

ing expected profit rate Πh
. As δ→ 0, Πh→[pAλ(v , pA , ¯N) −

¯Nk]/2 and Πa → pAλ(v , pA , ¯N) − ¯Nk. Because the firm’s

expected profit rate under the optimal price, max(Πa ,Πh), is
strictly positive, pAλ(v , pA , ¯N) − ¯Nk > 0; therefore, as δ→ 0,

Πh − Πa → −[pAλ(v , pA , ¯N) − ¯Nk]/2 < 0. As δ → v, Πh →
[pBλ(2v , pB , ¯N) − ¯Nk]/2, Πa → pBλ(2v , pB , ¯N)/2 − ¯Nk, and
Πh −Πa → ¯Nk/2 > 0, where, pB ∈ arg maxp≥0

{pλ(2v , p , ¯N)}.
These observations, together with the inequality (∂/∂δ)Πh >
(∂/∂δ)Πa

(by Lemma A2(c)) imply that there exists a unique

δ ∈ (0, v), namely, δa
, such thatΠh �Πa

. Furthermore,Πa >Πh

if and only if δ < δa
. Our assumption that the firm activates at

least one agent for any realized customer valuation V is sat-

isfied if and only if Πa >Πh
. We conclude that for δ < δa

, the

firm’s optimal price p∗I � pa
, and the firm activates

¯N agents.

To see that δa > ¯δ, observe that at δ � ¯δ, Πh �Πl <Πa
, where

the equality follows from the definition of
¯δ, and the inequal-

ity follows from Πl(p) <Πa(p) for p ∈ (0,VH).
(b) Because λ(v , p , n)/n strictly increases with n (by

Lemma A1(a)),

arg max

n∈{0,1,...,ñ}
{pλ(v , p , n) − nK}

�

{
ñ if K < pλ(v , p , ñ)/ñ ,
0 otherwise,

(A.12)

where ñ ∈ {1,2, . . . , ¯N} and K ∈ {KH ,KL}. If KH ≥
p∗Iλ(v ,p∗I , ¯N)/ ¯N , then under the optimal price p∗I it is optimal

for the firm to activate zero agents when NL �0. Because,

by assumption, the firm activates at least one agent, it must

be that

KH < p∗Iλ(v , p∗I , ¯N)/ ¯N. (A.13)

After setting price p � p∗I and observing realized costs

{Ki}i�1,..., ¯N , the firm’s employee agent activation prob-

lem is maxn∈{0,1,..., ¯N}{p∗Iλ(v , p∗I , n) − max(n − NL , 0)KH −
min(NL , n)KL}. Next we show that it is optimal for the firm

to activate
¯N agents, that is,

p∗Iλ(v , p∗I , ¯N) − ( ¯N −NL)KH −NLKL

≥ p∗Iλ(v , p∗I , n) −max(n −NL , 0)KH −min(NL , n)KL
(A.14)

for n ∈ {0, 1, . . . , ¯N − 1}. To see that (A.14) holds for n ∈
{0, 1, . . . ,NL}, observe that in that case the right-hand side

of (A.14) simplifies to p∗Iλ(v , p∗I , n)−nKL
, which is maximized

at n ∈ {0,NL} (by (A.12)). Inequality (A.13) implies that the

left-hand side of (A.14) is strictly positive, so (A.14) holds for

n � 0. For n � NL
, (A.14) simplifies to

p∗Iλ(v , p∗I , ¯N) − ¯NKH ≥ p∗Iλ(v , p∗I ,NL) −NLKH . (A.15)

That (A.15) holds follows from (A.12), where ñ � ¯N and

K � KH
, and (A.13). To see that (A.14) holds for n ∈ {NL + 1,

. . . , ¯N − 1}, observe that in that case (A.14) simplifies to

p∗Iλ(v , p∗I , ¯N) − ¯NKH ≥ p∗Iλ(v , p∗I , n) − nKH . (A.16)

That (A.16) holds follows from (A.12), where ñ � ¯N and

K � KH
, and (A.13). �

Proof of Proposition 1. Note that p∗I � pa
(by Lemma 4(a)).

The result then follows from Lemmas A2(b) and 2. �

Proof of Proposition 2. In view of Lemmas 3 and 4(b), to

establish the result it is sufficient to show that

pM < pA . (A.17)

Note that for n ∈ {1, . . . , ¯N − 1},

(∂2/∂p∂∆)ΠM(p , n)

� n
¯N∑

j�n
Pr(NL

� j)(∂/∂p)[λ(v , p , j)/λ(v , p , n)]

� [n/λ(v , p , n)]
¯N∑

j�n
Pr(NL

� j)[λ(v , p , j)/p]

×
{
[(∂/∂p)λ(v , p , j)]p/λ(v , p , j)
− [(∂/∂p)λ(v , p , n)]p/λ(v , p , n)

}
> 0, (A.18)

where the inequality holds because the price elasticity of

demand decreases with the number of agents. Let pM(n ,∆) ∈
arg maxp≥0

ΠM(p , n ,∆), where ΠM(p , n ,∆) denotes ΠM(p , n)
expanded to denote dependence on ∆. Next, we show that

inequality (A.18) implies, for ∆ < k and n ∈ {1, . . . , ¯N − 1},

pM(n ,∆) ≤ pM(n , k). (A.19)

Suppose, to the contrary, that pM(n ,∆) > pM(n , k). For ∆ < k,

ΠM(pM(n ,∆), n , k) −ΠM(pM(n , k), n , k)
>ΠM(pM(n ,∆), n ,∆) −ΠM(pM(n , k), n ,∆) ≥ 0, (A.20)

where the first inequality follows from (A.18). Inequality

(A.20) implies ΠM(pM(n ,∆), n , k) >ΠM(pM(n , k), n , k), a con-

tradiction. This establishes (A.19). Next, we show that for

n ∈ {1, . . . , ¯N − 1},
pM(n , k) < pA . (A.21)

Note that pM(n , k) ∈ arg maxp≥0
RM(p , n). To see that RM(p , n)

is strictly concave in p, observe that (∂2/∂p2)RM(p , n) �∑ ¯N
j�n Pr(NL � j)[p(∂2/∂p2)λ(v , p , j) + 2(∂/∂p)λ(v , p , j)] < 0,

where the inequality follows from Lemma A1(b). That

pλ(v , p , n) is strictly concave in p follows by parallel argu-

ment. Note

(∂/∂p)RM(p , n)

�

¯N∑
j�n

Pr(NL
� j)λ(v , p , j)

{
1+ [(∂/∂p)λ(v , p , j)]p/λ(v , p , j)

}
and

(∂/∂p)[pλ(v , p , ¯N)]
� λ(v , p , ¯N)

{
1+ [(∂/∂p)λ(v , p , ¯N)]p/λ(v , p , ¯N)

}
imply

(∂/∂p)RM(p , n)|p�pA

�

¯N−1∑
j�n

Pr(NL
� j)λ(v , pA , j)

·
{
1+ [(∂/∂p)λ(v , pA , j)]pA/λ(v , pA , j)

}
< 0, (A.22)
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where the equality holds because (∂/∂p)[pAλ(v ,pA , ¯N)]�0,

and the inequality holds because the price elasticity of de-

mand strictly decreases with the number of agents. Because

RM(p ,n) is strictly concave in p, (A.22) implies (A.21).

Together, (A.19) and (A.21) imply that for n∈{1, . . . , ¯N−1},

pM(n ,∆) < pA . (A.23)

Because, for ∆< k, the optimal pM � pM(nM ,∆) for some nM ∈
{1, . . . , ¯N − 1}, (A.23) implies (A.17). �

Proof of Lemma 5. (a) Consider the benchmark case where

customers are insensitive to delay. The unique equilibrium

in participating agents and demand rate (N , λ(v , p ,N )) �
( ¯N, ¯Nµ) if p ≤ v and ω ≥ k/µ, and (N , λ(v , p ,N )) � (0, 0)
otherwise. Consequently, the platform’s expected profit rate

is (p − ω) ¯Nµ if p ≤ v and ω ≥ k/µ, and is zero other-

wise. This implies the platform’s optimal price and wage

(p∗
0
, ω∗

0
) � (v , k/µ). Consider the base case where customers

are sensitive to delay. If p ≥ v or ω ≤ k/µ, then the unique

equilibrium (N , λ(v , p ,N )) � (0, 0) (by Lemma 1), and the

platform’s expected profit rate is zero. Because, by assump-

tion, the platform’s expected profit rate under the optimal

price and wage is strictly positive, p∗ < v and ω∗ > k/µ.
(b) If p < v and ω ≥ ¯Nk/λ(v , p , ¯N), then

¯N agents par-

ticipate; otherwise, no agents participate. Therefore, under

price p < v, wage ω � ¯Nk/λ(v , p , ¯N) is optimal, and the

platform’s objective function simplifies to pλ(v , p , ¯N) − ¯Nk,
which is maximized at price p∗ ∈ arg maxp≥0

{pλ(v , p , ¯N)}.
Using λ(v , p , 1) � (v − p)µ2/[(v − p)µ + c] and λ(v , p , 2) �
2

√
(v − p)µ3/[(v − p)µ+ c], it is straightforward to show that

p∗ | ¯N�1
� [vµ + c −

√
c(vµ+ c)]/µ and p∗ | ¯N�2

� [4vµ + 3c −√
c(8vµ+ 9c)]/(4µ), and thus that for

¯N ∈ {1, 2}, (∂/∂c)p∗ < 0

and (∂/∂c)λ(v , p∗ , ¯N)< 0. the last inequality implies that ω∗ �
¯Nk/λ(v , p∗ , ¯N) increases with c. �

Proof of Lemma 6. (a) The expected equilibrium demand

rate E[λ(V̂, p ,N )]� ¯Nµ if ω ≥ k/µ and p ≤V l
, E[λ(V̂, p ,N )]�

¯Nµ/2 if ω ≥ k/µ and p ∈ (V l ,V h], and E[λ(V̂, p ,N )] � 0

otherwise. The result follows. (b) The expected equilibrium

demand rate E[λ(v , p ,N )] � ¯Nµ if p ≤ v and ω ≥ KH/µ,
E[λ(v , p ,N )] � ¯Nµ/2 if p ≤ v and ω ∈ [KL/µ,KH/µ), and
E[λ(v , p ,N )]� 0 otherwise. The result follows. �

Proof of Proposition 3. (a) From Lemmas 2 and 6(a), if δ ≤
min( ¯δ

0
, ¯δ), then p∗ � p l < V l � p∗

0
, where the inequality fol-

lows because in the base case where customers are sensitive

to delay, λ(V l , p , n) � 0 if p ≥ V l
. If δ > max( ¯δ

0
, ¯δ), then p∗ �

ph < V h � p∗
0
, where the inequality follows by parallel argu-

ment. Thus, for the remainder of this proof, it only remains to

consider the parameter region δ ∈ (min( ¯δ
0
, ¯δ),max( ¯δ

0
, ¯δ)]. If

¯δ
0
≤ ¯δ and δ ∈ ( ¯δ

0
, ¯δ], then p∗ � p l < V h � p∗

0
. Suppose instead

for the remainder of the proof that
¯δ < ¯δ

0
, in which case it

only remains to consider δ ∈ ( ¯δ, ¯δ
0
], so that p∗ � ph

and p∗
0
�V l

.

Next we show that if [ph −V l]|δ� ¯δ
0

≤ 0, then p∗ ≤ p∗
0
. To do so,

we first establish that ph
increases with δ. Let ph(δ) denote

ph
expanded to denote dependence on δ. Note ph(δ) is the

unique solution to the first order condition (∂/∂p)Πh(p) � 0

(by Lemma A2a), which can be rewritten as

[(∂/∂p)λ(v + δ, ph(δ), ¯N)]ph(δ)/λ(v + δ, ph(δ), ¯N)+ 1

� 0. (A.24)

Note that for δ
1
< δ

2
,

−1 � [(∂/∂p)λ(v + δ
1
, ph(δ

1
), ¯N)]ph(δ

1
)/λ(v + δ

1
, ph(δ

1
), ¯N)

< [(∂/∂p)λ(v + δ
2
, ph(δ

1
), ¯N)]ph(δ

1
)/λ(v + δ

2
, ph(δ

1
), ¯N),
(A.25)

where the inequality follows from Lemma A1(c). Because

Πh(p) is strictly concave in p, (A.24) and (A.25) imply

that ph(δ) strictly increases with δ. If δ ∈ ( ¯δ, ¯δ
0
], then

p∗ ≤ ph |δ� ¯δ
0

≤ V l |δ� ¯δ
0

≤ p∗
0
, where the first inequality holds

because p∗ � ph
, which strictly increases with δ, and

the last inequality holds because p∗
0
� V l

, which strictly

decreases with δ. Finally, we show that if [ph − V l]|δ� ¯δ
0

> 0, then there exists

¯

δ ∈ [ ¯δ, ¯δ
0
) such that (15) holds if and

only if δ ∈ (
¯

δ, ¯δ
0
]. Because [ph − V l]|δ� ¯δ

0

> 0 and because ph

strictly increases and V l
strictly decreases with δ, there exists

¯

δ ∈ [ ¯δ, ¯δ
0
) such that ph ≤V l

if δ ∈ ( ¯δ,
¯

δ] and ph >V l
if δ ∈ (

¯

δ, ¯δ
0
].

Because p∗ � ph
and p∗

0
� V l

, we conclude that (15) holds if

and only if δ ∈ (
¯

δ, ¯δ
0
]. (b) Suppose δ < ¯δ

0
. Because Πh

and Πl

are continuous in c, Lemma A3 implies that there exist

¯

cl , cm ,

and c̄h such that 0 ≤
¯

cl < cm < c̄h ; p∗ � p l
if c ∈ [

¯

cl , cm]; and
p∗ � ph

if c ∈ (cm , c̄h]. Because p l < ph
(by LemmaA2(b)) and p j

is continuous in c for j ∈ {h , l}, there exist cl ∈ [
¯

cl , cm) and ch ∈
(cm , c̄h] such that p∗ |c∈[cl , cm ] < p∗ |c∈(cm , ch ]. �

Proof of Proposition 4. (a) We first show that if k >
¯

k,
then there exists ∆̌ < k such that for ∆ ∈ [∆̌, k], ω∗ ∈
{ωL , ωM(1)}, where ωM(n) � nKL/λ(v , pM(n), n). If k >
Pr(NL < ¯N)RA/(2 ¯N), then lim∆→k[ΠL−ΠH]�Pr(NL � ¯N)RA−
(RA − 2

¯Nk) > 0. If k > [RA − RM(pM(1), 1)]/(2 ¯N), then

lim∆→k[ΠM − ΠH] � RM(pM(1), 1) − (RA − 2
¯Nk) > 0. There-

fore, if k >
¯

k, then lim∆→k[max(ΠL ,ΠM) −ΠH] > 0. The proof

of Lemma 3 establishes that if max(ΠL ,ΠM) > ΠH
, then

ω∗ ∈ {ωL , ωM}. Furthermore, for sufficiently large ∆, nM � 1.

Therefore, because Π j
is continuous in ∆ for j ∈ {H, L,M},

there exists ∆̌ < k such that for ∆ ∈ [∆̌, k], ω∗ ∈ {ωL , ωM(1)}.
Because k < ¯k, ˜∆

0
> k, and therefore ω∗

0
� KH/µ > k/µ (by

Lemma 6b). Because ω∗ ∈ {ωL , ωM(1)} on ∆ ∈ [∆̌, k], ωL
and

ωM(1) are continuous in∆, and lim∆→k ω
L � lim∆→k ω

M(1)�0,

there exists
˜∆ < k such that if ∆ > ˜∆, ω∗ < k/µ. (b) By

Lemma A6, ρ > ρ̄ and ∆ < ∆̆
0
imply that ω∗ � ωH

if c ≤ c̄,
and ω∗ � ωL

if c > c̄, where c̄ > 0. Furthermore, limc↑c̄ ω
H >

limc↓c̄ ω
L
. Therefore, because ω j

is continuous in c for j ∈
{H, L}, there exist cl , cm , and ch such that 0 < cl < cm < ch and

ω∗ |c∈[cl , cm ] > ω
∗ |c∈(cm , ch ). �
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